Force Required Not to Slide Back

A 50 pound box is on a ramp at an incline of 20° to the horizontal. What is the force required to keep it from sliding back down the ramp?

Picture 1st

What we learn

- The blue arrow in the right triangle (with the force of gravity) represents the vertical component of gravity with respect to the ramp
- The red arrow in the right triangle represents the horizontal component of gravity with respect to the ramp
- The red arrow is what we need since it is the force required to hold the box stationary on the ramp

How we get it

sin 20° = opposite over hypotenuse
 opposite is the force we wish to find
 hypotenuse is known – 50 lbs due to
 gravity.

so, opposite = 50 sin 20°

Your Book's Interpretation

 Your book uses cosine instead of sine and they are using the other triangle. The triangle with the negative red vector along the ramp.

How Your Book's gets answer

 cos (90-20)° = adjacent over hypotenuse adjacent is the force we wish to find hypotenuse is known – 50 lbs due to gravity.

so, adjacent = 50 cos 70°

The Answer

Whether you use sine
Force = 50 sin 20° ≈ 17.1 lbs.

Or you use cosine

Force = $50 \cos 70^{\circ} \approx 17.1 \text{ lbs.}$

Hence, the force required to keep a 50 lbs. box from sliding down a ramp with an incline of 20° is about 17 lbs.