Component Work Problem

#42 p. 625 of Stewart's 5th Edition Pre-Calculus

A car drives 500 ft on a road that is inclined
12° to the horizontal. The car weighs 2500
lbs. Find the work done by the car in
overcoming gravity.

Component Work Problem

#42 p. 625 of Stewart's 5th Edition Pre-Calculus

A car drives 500 ft on a road that is inclined
12° to the horizontal. The car weighs 2500
lbs. Find the work done by the car in
overcoming gravity.

Picture 1st

Your Book's Interpretation

 Your book uses cosine instead of sine and they are using the other triangle. The triangle with the negative red vector along the ramp.

Horizontal Component – *i* component

 cos (90-12)° = adjacent over hypotenuse adjacent is the force we wish to find hypotenuse is known – 2500 lbs due to gravity.

so, adjacent = $2500 \cos 78^{\circ} \approx 519.8$

Vertical Component – j component

cos (12)° = adjacent over hypotenuse
 adjacent is the force we wish to find
 hypotenuse is known – 2500 lbs due to
 gravity.

so, $adjacent = 2500 cos 12^{\circ} \approx 2445.4$

Force Components

$$F = 519.8i + 2445.4j$$

Find the Distance Component

Since the distance is the horizontal component

$$D = 500i + 0j$$

Work = Force • Distance

 The work is the dot product of the force (acting in the same direction) & the distance

W = F • D =
$$<519.8$$
, 2445.4> • <500 , 0> = $519.8 \cdot 500 + 2445.4 \cdot 0 = 259900 + 0$ $\approx 260,000$ ft-lbs.

Note: I didn't keep track of the directions of these vectors. Technically, gravity is negative and works with a -260,000 ft.-lbs force in this direction & the car must work with a positive 260,000 ft.-lbs. force to stay on the incline. I have a new respect for my parking brake & the importance of curbing my wheels – how about you?