Example #1 p. 6 Ch. 9

Find the dot product of $\mathbf{u} = \langle 1, 1 \rangle \& \mathbf{v} = \langle -1, 1 \rangle$ Indicate what this means.

Find the dot product of u & v

Multiply the vertical components of u & v

$$u_a \cdot v_a = 1 \cdot -1 = -1$$

Multiply the horizontal components of u & v

$$u_b \cdot v_b = 1 \cdot 1 = 1$$

 The dot product is a scalar. Sum vertical & horizonatl component products

$$u dot v = -1 + 1 = 0$$

The Dot Product = 0

Since the dot product is zero, this means that the vectors are orthogonal to one another.

Orthogonal means at right angles.