Example #2 p. 5 Ch. 9

Find the angle between the vectors 2i + j and -3i + j

Understand Component form of unit vectors

 Remember that you "pluck off" i & j and use them as components a & b

so,
$$2i + j = \langle 2, 1 \rangle$$

so,
$$-3i + j = <-3, 1>$$

Find the magnitude of $u = \langle 2, 1 \rangle$, |u|

• Magnitude of u is $c = \sqrt{a^2 + b^2}$

So,
$$c = \sqrt{4 + 1} = \sqrt{5}$$

 $|u| = \sqrt{5}$

Find the magnitude of v = <-3, 1>, |v|

• Magnitude of v is $c = \sqrt{a^2 + b^2}$ So, $c = \sqrt{9 + 1} = \sqrt{10}$ $|v| = \sqrt{10}$

Find the dot product of u & v

Multiply the vertical components of u & v

$$u_a \cdot v_a = 2 \cdot -3 = -6$$

Multiply the horizontal components of u & v

$$u_b \cdot v_b = 1 \cdot 1 = 1$$

 The dot product is a scalar. Sum vertical & horizonatl component products

$$u dot v = -6 + 1 = -5$$

Use the dot product formula to solve for θ

• Using the fact that the dot product of u & v is equal to $|u||v|\cos\theta$, θ can be found as

$$\theta = \cos^{-1} \underline{u \, dot \, v}$$

$$|u||v|$$
So,
$$\theta = \cos^{-1} \underline{-5} = \cos^{-1} \underline{-5} = \cos^{-1} \underline{-1}$$

$$\sqrt{5} \cdot \sqrt{10} \qquad 5\sqrt{2}$$

thus, we know this is 45° in Quadrant II since inverse cosine is defined on $[0, \pi)$, therefore the angle between them is $180^{\circ} - 45^{\circ} = 135^{\circ}$

Thus, θ is

$$\theta = 135^{\circ}$$