#### Example #1 p. 5 Ch. 9

To the nearest 10<sup>th</sup> of a degree, find the angle between

$$u = < 5, -12 > & v = < 4, 3 >$$

# Find the magnitude of u = <5, -12>, |u|

• Magnitude of u is  $c = \sqrt{a^2 + b^2}$ 

So, 
$$c = \sqrt{25 + 144} = \sqrt{169} = 13$$
  
 $|u| = 13$ 

## Find the magnitude of $v = \langle 4, 3 \rangle$ , |v|

• Magnitude of v is  $c = \sqrt{a^2 + b^2}$ So,  $c = \sqrt{16 + 9} = \sqrt{25} = 5$ |v| = 5

#### Find the dot product of u & v

Multiply the vertical components of u & v

$$u_a \cdot v_a = 5 \cdot 4 = 20$$

Multiply the horizontal components of u & v

$$u_b \cdot v_b = -12 \cdot 3 = -36$$

 The dot product is a scalar. Sum vertical & horizonatl component products

$$u dot v = 20 + -36 = -16$$

### Use the dot product formula to solve for $\theta$

• Using the fact that the dot product of u & v is equal to  $|u||v|\cos\theta$ ,  $\theta$  can be found as

$$\theta = \cos^{-1} \underline{u \, dot \, v}$$

$$|u||v|$$
So, 
$$\theta = \cos^{-1} \underline{-16} \approx 104.2500327^{\circ}$$

$$13 \bullet 5$$

### Thus, $\theta$ is

 $\theta \approx 104.3^{\circ}$