Example 1 Hyperbolas p. 9 Ch 11

Shifted Hyperbolas

$$x^2 - y^2 = 10(x - y) + 1$$

1st the expand

$$x^2 - y^2 = 10x - 10y + 1$$

Group all x's & y's leaving the constant on the right

$$x^2 - 10x - y^2 + 10y = 10x - 10x - 10y + 10y + 1$$

$$x^2 - 10x - y^2 + 10y = 1$$

Complete the Square for x's & y's

Complete the squares for the x's

$$(^{1}/_{2} \cdot 10)^{2} = (5)^{2} = 25$$

 $(x^{2} - 10x + 25) - y^{2} + 10y = 1 + 25$
 $(x - 5)^{2} - y^{2} + 10y = 26$

Complete the squares for the y's

Step 1: Remove negative coefficient

$$(x-5)^2 - (y^2 - 10y) = 26$$

Step 2: Complete the square

$$(^{1}/_{2} \cdot 10)^{2} = (5)^{2} = 25$$

 $(x-5)^{2} - (y^{2} - 10y + 25) = 26 - 25$

Remember that -25 was actually added in the left because of the negative factored out!

$$\frac{(x-5)^2 - (y-5)^2}{1} = 1$$

a) Opens up/down or left/right?

$$\frac{(x-5)^2}{1} - \frac{(y-5)^2}{1} = 1$$

 This Hyperbola opens left/right since the x² is positive & y² is negative

$$(x-5)^2 - (y^2-5)^2 = 1$$
1

- Get a, b & c
- a² is the positive denominator

so,
$$a^2 = 1$$
 so, $a = 1$

• b² is the negative denominator

so,
$$b^2 = 1$$
 so, $b = 1$

• $c^2 = a^2 + b^2$ so, $c = \sqrt{c^2} = \pm \sqrt{1 + 1} = \pm \sqrt{2} \approx \pm 1.4$ so, $c = \pm \sqrt{2}$

b) Give the Center

• The center of a shifted hyperbola is at (h, k)

C(5, 5)

c) Give the Vertices

• The vertices are $V_1(h - a, k) \& V_2(h + a, k)$ since this hyperbola opens left/right

Thus,
$$V_1(5-1,5) \& V_2(5+1,5)$$

$$V_1(4, 5) \& V_2(6, 5)$$

d) Find the Foci

• Use c to give the foci. For an hyperbola which opens left/right (x^2 term is positive) the foci will be $F_1(h-c, k)$ & $F_2(h+c, k)$

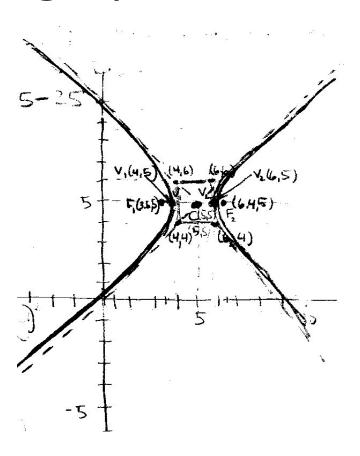
Thus,
$$F_1(5-\sqrt{2},5) \& F_2(5+\sqrt{2},5)$$

$$F_1(\approx 3.6, 5) \& F_2(\approx 6.4, 5)$$

c) Find the Asymptotes

• The asymptotes tells us what values the function will approach but never reach and are given by $y - k = \frac{b}{a}(x - h)$ and $y - k = -\frac{b}{a}(x - h)$ when the x^2 term is positive.

Thus,
$$y-5=1(x-5)$$
 & $y-5=-1(x-5)$
 $y=x$ & $y=-x+10$


Find the 4 points that Form Central Box

 These 4 points lie on the asymptotes and are (h-b, k+a) & (h-b, k-a) & (h+b, k+a) & (h+b, k-a) when the hyperbola opens left/right

```
(4, 6) & (4, 4) & (6, 6) & (6, 4)
```

e) Sketch the graph

- 1st Place the vertices
- 2nd Place the foci
- 3rd Draw the asymptotes
- 4th Place the 4 points
 that make the central box
- 5th Draw the hyperbola

