Example 1 Ellipses p. 6 Ch 11

$$4x^2 + y^2 = 16$$

 Starting from where we left off in Example #a on page 5

$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

$$\frac{x^2}{4} + \underline{y^2} = 1$$

- Get a, b & c
- a² is the larger denominator

so,
$$a^2 = 16$$
 so, $a = 4$

• b² is the smaller denominator

so,
$$b^2 = 4$$
 so, $b = 2$

• $c^2 = a^2 - b^2$

so,
$$c = \sqrt{c^2} = \pm \sqrt{16 - 4} = \pm \sqrt{12} = \pm \sqrt{4}$$
 so, $c = \pm 2\sqrt{3}$

a) Give the Vertices

 The vertices are (0, ±a) since this ellipse has a major axis that is vertical

$$V_1(0, -4)$$
 & $V_2(0, 4)$

b) Find the Foci

 Use c to give the foci. For an ellipse which a vertical major axis (y² denominator > x² denominator) the foci will be (0, c) & (0, -c)

So,
$$F_1(0, 2\sqrt{3}) \& F_2(0, -2\sqrt{3})$$

c) Find the Eccentricity

• The eccentricity tells us how "squashed" the ellipse is around its major axis. e = c/a

So,
$$e = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$

Note: This is looking less like a circle because it is fairly close to 1.

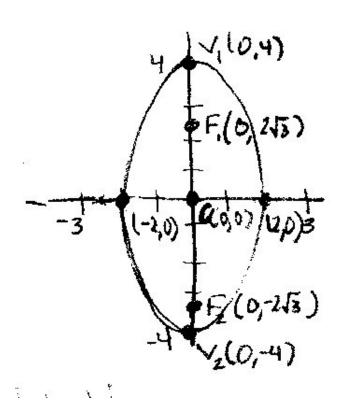
d) Find the Major Axis length

• The major axis is vertical since the larger denominator is on the y^2 . That is $a^2 \& a = 4$

Major Axis Length: 2(4) = 8

So, we see that the vertices being at (0, 4) & (0, -4) puts them 8 units apart which is the length of the major axis.

e) Find the Minor Axis length


• The minor axis is horizontal since the smaller denominator is on the x^2 . That is $b^2 \& b = 2$

Minor Axis Length: 2(2) = 4

So, we see that two points on a horizontal line through the center are at (-2, 0) & (2, 0) putting them 4 units apart which is the length of the minor axis.

e) Sketch the graph

- 1st Place the vertices
- 2nd Place the foci
- 3rd Place the 2 points on the minor axis
- 4th Draw the ellipse

