Example 1 Parabolas p. 3 Ch 11

$$8x^2 + 12y = 0$$

 1st separate the squared variable & first degree variable using algebra

$$8x^2 + 12y - 12y = 0 - 12y$$

$$8x^2 = -12y$$

Make the numeric coefficient of the squared variable one

$$8x^2 \div 8 = -12y \div 8$$

Simplify

$$x^2 = -3/_2 y$$

$$x^2 = -3/_2 y$$

 Find p. You know that the coefficient of y is 4p, so use algebra

$$4p = -3/_{2}$$

$$4p \div 4 = -3/_2 \div 4$$

$$p = -3/_{2} \cdot 1/_{4} = -3/_{8}$$

a) Find the Focus (0, p)

 Use p to give the focus. For a up/down facing parabola the focus will be (0, p).

$$F(0, -3/8)$$

b) Find Directrix

• Since this is an downward facing parabola (what we would once have looked at as $y = ax^2$) this is a horizontal line p units above the vertex, which is (0, 0) in this case

$$y = \frac{3}{8}$$

c) Find the focal diameter

The focal diameter is 4 times p's distance (that means absolute value is used) or 2 times p's distance on either side of the focus

$$|4 - \frac{3}{8}| = \frac{3}{2}$$

and |2 - 3/8| = 3/4 which is more helpful in finding 2 more points on the parabola (-3/4, -3/8) & (3/4, -3/8) are the points on the parabola equidistant from the focus

d) Sketch the graph

- 1st Place the vertex
- 2nd Place the directrix
- 3rd Place the 2 points on the focal diameter
- 4th Draw the parabola

