Example #d p. 10 Ch. 11

Given a random equation can you tell if it is a hyperbola, ellipse, parabola or degenerate.

$$\frac{3y^2}{16} + 1 = \underline{x(x-8)} + 4$$

• Start by expanding out the right side. $\frac{1}{4}x(x-8)$

$$\frac{3}{16}y^2 + 1 = \frac{1}{4}x^2 - \frac{1}{4} \cdot 8x + 4$$

So,
$$\frac{3}{16}y^2 + 1 = \frac{1}{4}x^2 - \frac{2x}{4} + 4$$

 Now clear the equation of fractions by multiplying every term by the LCD = 16

16 •
$$\frac{3}{16}$$
 y² +1•16 = 16• $\frac{1}{4}$ x² - 16•2x + 4•16

Now With:
$$3y^2 + 16 = 4x^2 - 32x + 64$$

 Bring all x's and y's to the left and the constants to the right to prepare for the next step of completing the square on the x and y's

$$3y^2 - 4x^2 + 32x + 16 - 16 = 4x^2 - 4x^2 - 32x + 32x + 64 - 16$$

So,
$$3y^2 - 4x^2 + 32x = 48$$

$$3y^2 - 4x^2 + 32x = 48$$

Step 1: Factor out x's numeric coefficient

$$3y^2 - 4(x^2 - 8x) = 48$$

Step 2: Complete the square

$$(^{1}/_{2} \cdot 8)^{2} = (4)^{2} = 16$$

3y² - 4(x² - 8x + 16) = 48 - 64

Remember $-4 \cdot 16 = -64$ must be added to the right side too!

Step 2: Rewrite

$$3y^2 - 4(x - 4)^2 = -16$$

Finish By Making Constant +1

Divide all terms by -16

$$3y^2 - 4(x-4)^2 = -16$$
-16 -16

$$\frac{(x-4)^2 - y^2}{4} = 1$$

 This is a shifted hyperbola since the x & y are squared but it's a difference.